Artikel

Indirect inference: Which moments to match?

The standard approach to indirect inference estimation considers that the auxiliary parameters, which carry the identifying information about the structural parameters of interest, are obtained from some recently identified vector of estimating equations. In contrast to this standard interpretation, we demonstrate that the case of overidentified auxiliary parameters is both possible, and, indeed, more commonly encountered than one may initially realize. We then revisit the 'moment matching' and 'parameter matching' versions of indirect inference in this context and devise efficient estimation strategies in this more general framework. Perhaps surprisingly, we demonstrate that if one were to consider the naive choice of an efficient Generalized Method of Moments (GMM)-based estimator for the auxiliary parameters, the resulting indirect inference estimators would be inefficient. In this general context, we demonstrate that efficient indirect inference estimation actually requires a two-step estimation procedure, whereby the goal of the first step is to obtain an efficient version of the auxiliary model. These two-step estimators are presented both within the context of moment matching and parameter matching.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-17 ; Basel: MDPI

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Thema
indirect inference
auxiliary models
overidentification

Ereignis
Geistige Schöpfung
(wer)
Frazier, David T.
Renault, Eric
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/econometrics7010014
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Frazier, David T.
  • Renault, Eric
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)