EEG-Based Classification of the Driver Alertness State

Abstract: GMLVQ (Generalized Matrix Relevance Learning Vector Quantization) is a method of machine learning with an adaptive metric. While training, the prototype vectors as well as the weight matrix of the metric are adapted simultaneously. The method is presented in more detail and compared with other machine learning methods employing a fixed metric. It was investigated how accurately the methods can assign the 6-channel EEG of 25 young drivers, who drove overnight in the simulation lab, to the two classes of mild and severe drowsiness. Results of cross-validation show that GMLVQ is at 81.7 ± 1.3 % mean classification accuracy. It is not as accurate as support-vector machines (SVM) and gradient boosting machines (GBM) and cannot exploit the potential of learning adaptive metrics in the case of EEG data. However, information is provided on the relevance of each signal feature from the weighting matrix.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
EEG-Based Classification of the Driver Alertness State ; volume:6 ; number:3 ; year:2020 ; pages:353-356 ; extent:4
Current directions in biomedical engineering ; 6, Heft 3 (2020), 353-356 (gesamt 4)

Urheber
Golz, Martin
Thomas, Sebastian
Schenka, Adolf

DOI
10.1515/cdbme-2020-3091
URN
urn:nbn:de:101:1-2022101215264616994698
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:33 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Golz, Martin
  • Thomas, Sebastian
  • Schenka, Adolf

Ähnliche Objekte (12)