Arbeitspapier

On estimation of monotone and concave frontier functions

When analyzing the productivity of firms, one may want to compare how the firms transform a set of inputs x (typically labor, energy or capital) into an output y (typically a quantity of goods produced). The economic efficiency of a firm is then defined in terms of its ability of operating close to or on the production frontier which is the boundary of the production set. The frontier function gives the maximal level of output attainable by a firm for a given combination of its inputs. The efficiency of a firm may then be estimated via the distance between the attained production level and the optimal level given by the frontier function. From a statistical point of view, the frontier function may be viewed as the upper boundary of the support of the population of firms density in the input and output space. It is often reasonable to assume that the production frontier is a concave monotone function. Then, a famous estimator, in the univariate input and output case, is the data envelopment analysis (DEA) estimator which is the lowest concave monotone increasing function covering all sample points. This estimator is biased downwards since it never exceeds the true production frontier. In this paper we derive the asymptotic distribution of the DEA estimator, which enables us to assess the asymptotic bias and hence to propose an improved bias corrected estimator. This bias corrected estimator involves consistent estimation of the density function as well as of the second derivative of the production frontier. We also discuss briefly the construction of asymptotic confidence intervals. The finite sample performance of the bias corrected estimator is investigated via a simulation study and the procedure is illustrated for a real data example.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 1998,9

Klassifikation
Wirtschaft
Thema
confidence interval
Asymptotic distribution
bias correction
data envelopment analysis
density support
frontier function

Ereignis
Geistige Schöpfung
(wer)
Gijbels, Irène
Mammen, Enno
Park, Byeong U.
Simar, Léopold
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
1998

Handle
URN
urn:nbn:de:kobv:11-10056435
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Gijbels, Irène
  • Mammen, Enno
  • Park, Byeong U.
  • Simar, Léopold
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 1998

Ähnliche Objekte (12)