Arbeitspapier

Outliers & predicting time series: A comparative study

Nonparametric prediction of time series is a viable alternative to parametric prediction, since parametric prediction relies on the correct specification of the process, its order and the distribution of the innovations. Often these are not known and have to be estimated from the data. Another source of nuisance can be the occurrence of outliers. By using nonparametric methods we circumvent both problems, the specification of the processes and the occurrence of outliers. In this article we compare the prediction power for parametric prediction, semiparametric prediction and nonparamatric methods such as support vector machines and pattern recognition. To measure the prediction power we use the MSE. Furthermore we test if the increase in prediction power is statistically significant.

Language
Englisch

Bibliographic citation
Series: IWQW Discussion Papers ; No. 05/2013

Classification
Wirtschaft
Subject
Parametric prediction
Nonparametric prediction
Support Vector Regression
Outliers

Event
Geistige Schöpfung
(who)
Ardelean, Vlad
Pleier, Thomas
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
(where)
Nürnberg
(when)
2013

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Ardelean, Vlad
  • Pleier, Thomas
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)

Time of origin

  • 2013

Other Objects (12)