Arbeitspapier
Outliers & predicting time series: A comparative study
Nonparametric prediction of time series is a viable alternative to parametric prediction, since parametric prediction relies on the correct specification of the process, its order and the distribution of the innovations. Often these are not known and have to be estimated from the data. Another source of nuisance can be the occurrence of outliers. By using nonparametric methods we circumvent both problems, the specification of the processes and the occurrence of outliers. In this article we compare the prediction power for parametric prediction, semiparametric prediction and nonparamatric methods such as support vector machines and pattern recognition. To measure the prediction power we use the MSE. Furthermore we test if the increase in prediction power is statistically significant.
- Language
-
Englisch
- Bibliographic citation
-
Series: IWQW Discussion Papers ; No. 05/2013
- Classification
-
Wirtschaft
- Subject
-
Parametric prediction
Nonparametric prediction
Support Vector Regression
Outliers
- Event
-
Geistige Schöpfung
- (who)
-
Ardelean, Vlad
Pleier, Thomas
- Event
-
Veröffentlichung
- (who)
-
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
- (where)
-
Nürnberg
- (when)
-
2013
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Ardelean, Vlad
- Pleier, Thomas
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
Time of origin
- 2013