Artikel

Modeling intensification decisions in the Kilombero Valley floodplain: A Bayesian belief network approach

The Kilombero Valley floodplain in Tanzania is a major agricultural area. Government initiatives and projects supported by international funding have long sought to boost productivity. Due to increasing population pressure, smallholder farmers are forced to increase their output. Nevertheless, the level of intensification is still lower than what is considered necessary to increase production and support smallholder livelihoods significantly. This article aims to better understand farmers’ intensification choices and their interdependent determinants. We propose a novel modeling approach for identifying determinants of intensification and their interrelationships by combining a Bayesian belief network (BBN), experimental design, and multivariate regression trees. Our approach complements existing lower‐dimensional statistical models by considering uncertainty and providing an easily updatable model structure. The BBN is constructed and calibrated using data from a survey of 304 farm households. Our findings show how the data‐driven BBN approach can be used to identify variables that influence farmers’ decision to choose one technique over another. Furthermore, the most important drivers vary widely, depending on the intensification options being considered.

Sprache
Englisch

Erschienen in
Journal: Agricultural Economics ; ISSN: 1574-0862 ; Volume: 54 ; Year: 2022 ; Issue: 1 ; Pages: 23-43 ; Hoboken, NJ: Wiley

Klassifikation
Wirtschaft
Thema
agriculture
Bayesian belief network
intensification
Kilombero Valley
land use
regression trees
Tanzania

Ereignis
Geistige Schöpfung
(wer)
Gebrekidan, Bisrat Haile
Heckelei, Thomas
Rasch, Sebastian
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2022

DOI
doi:10.1111/agec.12740
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Gebrekidan, Bisrat Haile
  • Heckelei, Thomas
  • Rasch, Sebastian
  • Wiley

Entstanden

  • 2022

Ähnliche Objekte (12)