Artikel

On the nonparametric estimation of the conditional hazard estimator in a single functional index

This paper deals with the conditional hazard estimator of a real response where the variable is given a functional random variable (i.e it takes values in an infinite-dimensional space). Specifically, we focus on the functional index model. This approach offers a good com- promise between nonparametric and parametric models. The principle aim is to prove the asymptotic normality of the proposed estimator under general conditions and in cases where the variables satisfy the strong mixing dependency. This was achieved by means of the kernel estimator method, based on a single-index structure. Finally, a simulation of our methodol- ogy shows that it is efficient for large sample sizes.

Language
Englisch

Bibliographic citation
Journal: Statistics in Transition new series (SiTns) ; ISSN: 2450-0291 ; Volume: 23 ; Year: 2022 ; Issue: 2 ; Pages: 89-105 ; Warsaw: Sciendo

Subject
single functional index
conditional hazard function
nonparametric estimation,»-mixing dependency
asymptotic normality
functional data

Event
Geistige Schöpfung
(who)
Gagui, Abdelmalek
Chouaf, Abdelhak
Event
Veröffentlichung
(who)
Sciendo
(where)
Warsaw
(when)
2022

DOI
doi:10.2478/stattrans-2022-0018
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Gagui, Abdelmalek
  • Chouaf, Abdelhak
  • Sciendo

Time of origin

  • 2022

Other Objects (12)