Artikel
On the nonparametric estimation of the conditional hazard estimator in a single functional index
This paper deals with the conditional hazard estimator of a real response where the variable is given a functional random variable (i.e it takes values in an infinite-dimensional space). Specifically, we focus on the functional index model. This approach offers a good com- promise between nonparametric and parametric models. The principle aim is to prove the asymptotic normality of the proposed estimator under general conditions and in cases where the variables satisfy the strong mixing dependency. This was achieved by means of the kernel estimator method, based on a single-index structure. Finally, a simulation of our methodol- ogy shows that it is efficient for large sample sizes.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Statistics in Transition new series (SiTns) ; ISSN: 2450-0291 ; Volume: 23 ; Year: 2022 ; Issue: 2 ; Pages: 89-105 ; Warsaw: Sciendo
- Subject
-
single functional index
conditional hazard function
nonparametric estimation,»-mixing dependency
asymptotic normality
functional data
- Event
-
Geistige Schöpfung
- (who)
-
Gagui, Abdelmalek
Chouaf, Abdelhak
- Event
-
Veröffentlichung
- (who)
-
Sciendo
- (where)
-
Warsaw
- (when)
-
2022
- DOI
-
doi:10.2478/stattrans-2022-0018
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Gagui, Abdelmalek
- Chouaf, Abdelhak
- Sciendo
Time of origin
- 2022