Approximation of Singularly Perturbed Parabolic Reaction-Diffusion Equations with Nonsmooth Data
Abstract: In this paper we consider the Dirichlet problem on a rectangle for singularly perturbed parabolic equations of reaction-diffusion type. The reduced (for ε = 0) equation is an ordinary differential equation with respect to the time variable; the singular perturbation parameter ε may take arbitrary values from the half-interval (0,1]. Assume that sufficiently weak conditions are imposed upon the coefficients and the right-hand side of the equation, and also the boundary function. More precisely, the data satisfy the Hölder continuity condition with a small exponent α and α/2 with respect to the space and time variables. To solve the problem, we use the known ε-uniform numerical method which was developed previously for problems with sufficiently smooth and compatible data. It is shown that the numerical solution converges ε-uniformly. We discuss also the behavior of local accuracy of the scheme in the case where the data of the boundary-value problem are smoother on a part of the domain of definition.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Approximation of Singularly Perturbed Parabolic Reaction-Diffusion Equations with Nonsmooth Data ; volume:1 ; number:3 ; year:2001 ; pages:298-315
Computational methods in applied mathematics ; 1, Heft 3 (2001), 298-315
- Urheber
-
Shishkin, Grigorii
- DOI
-
10.2478/cmam-2001-0020
- URN
-
urn:nbn:de:101:1-2410261606363.516923000489
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 15.08.2025, 07:34 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Shishkin, Grigorii