Artikel

Discovering optimal weights in weighted-scoring stock-picking models: A mixture design approach

Certain literature that constructs a multifactor stock selection model adopted a weighted-scoring approach despite its three shortcomings. First, it cannot effectively identify the connection between the weights of stock-picking concepts and portfolio performances. Second, it cannot provide stock-picking concepts' optimal combination of weights. Third, it cannot meet various investor preferences. Thus, this study employs a mixture experimental design to determine the weights of stock-picking concepts, collect portfolio performance data, and construct performance prediction models based on the weights of stock-picking concepts. Furthermore, these performance prediction models and optimization techniques are employed to discover stock-picking concepts' optimal combination of weights that meet investor preferences. The samples consist of stocks listed on the Taiwan stock market. The modeling and testing periods were 1997-2008 and 2009-2015, respectively. Empirical evidence showed (1) that our methodology is robust in predicting performance accurately, (2) that it can identify significant interactions between stock-picking concepts' weights, and (3) that which their optimal combination should be. This combination of weights can form stock portfolios with the best performances that can meet investor preferences. Thus, our methodology can fill the three drawbacks of the classical weighted-scoring approach.

Sprache
Englisch

Erschienen in
Journal: Financial Innovation ; ISSN: 2199-4730 ; Volume: 6 ; Year: 2020 ; Issue: 1 ; Pages: 1-28 ; Heidelberg: Springer

Klassifikation
Management
Thema
Portfolio optimization
Stock-picking
Weighted-scoring
Mixture experimental design
Multivariable polynomial regression analysis

Ereignis
Geistige Schöpfung
(wer)
Yeh, I-Cheng
Liu, Yi-Cheng
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2020

DOI
doi:10.1186/s40854-020-00209-x
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Yeh, I-Cheng
  • Liu, Yi-Cheng
  • Springer

Entstanden

  • 2020

Ähnliche Objekte (12)