Arbeitspapier

Minimizing sensitivity to model misspecification

We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on simple one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. To interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study two binary choice models: a cross-sectional model where the error distribution is misspecified, and a dynamic panel data model where the number of time periods is small and the distribution of individual effects is misspecified.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP37/20

Classification
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Subject
Model misspecification
robustness
sensitivity analysis
latent variables

Event
Geistige Schöpfung
(who)
Bonhomme, Stéphane
Weidner, Martin
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2020

DOI
doi:10.1920/wp.cem.2020.3720
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bonhomme, Stéphane
  • Weidner, Martin
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2020

Other Objects (12)