Arbeitspapier

Multifractality and long-range dependence of asset returns: The scaling behaviour of the Markov-switching multifractal model with lognormal volatility components

In this paper we consider daily financial data from various sources (stock market indices, foreign exchange rates and bonds) and analyze their multi-scaling properties by estimating the parameters of a Markov-switching multifractal model (MSM) with Lognormal volatility components. In order to see how well estimated models capture the temporal dependency of the empirical data, we estimate and compare (generalized) Hurst exponents for both empirical data and simulated MSM models. In general, the Lognormal MSM models generate ?apparent? long memory in good agreement with empirical scaling provided one uses sufficiently many volatility components. In comparison with a Binomial MSM specification [7], results are almost identical. This suggests that a parsimonious discrete specification is flexible enough and the gain from adopting the continuous Lognormal distribution is very limited.

Language
Englisch

Bibliographic citation
Series: Economics Working Paper ; No. 2008-09

Classification
Wirtschaft
Subject
Markov-switching multifractal
scaling
return volatility
Kapitalertrag
Volatilität
Finanzmarkt
Markovscher Prozess
Statistische Verteilung
Theorie

Event
Geistige Schöpfung
(who)
Liu, Ruipeng
Di Matteo, Tiziana
Lux, Thomas
Event
Veröffentlichung
(who)
Kiel University, Department of Economics
(where)
Kiel
(when)
2008

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Liu, Ruipeng
  • Di Matteo, Tiziana
  • Lux, Thomas
  • Kiel University, Department of Economics

Time of origin

  • 2008

Other Objects (12)