l-convex legendre curves and geometric inequalities
Abstract: In this paper we consider ℓ-convex Legendre curves, which are natural generalizations of strictly convex curves. We generalize various optimal geometric inequalities, isoperimetric inequality, Bonnesen’s inequality and Green–Osher inequality, for strictly convex curves to ones for ℓ-convex Legendre curves. Moreover we generalize the inverse curvature curve flow for this class of Legendre curves and prove that it always converges to a compact soliton after rescaling. Unlike in the class of regular curves, there are infinitely many compact solitons, which include circles and astroids
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Calculus of variations and partial differential equations. - 62, 4 (2023) , 135, ISSN: 1432-0835
- Klassifikation
-
Mathematik
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2023
- Urheber
- DOI
-
10.1007/s00526-023-02480-z
- URN
-
urn:nbn:de:bsz:25-freidok-2358463
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:48 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Li, Mingyan
- Wang, Guofang
- Universität
Entstanden
- 2023