Artikel
Refined best reply correspondence and dynamics
We call a correspondence, defined on the set of mixed strategy pro les, a generalized best reply correspondence if it (1) has a product structure, (2) is upper hemi-continuous, (3) always includes a best reply to any mixed strategy pro le, and (4) is convex- and closed-valued. For each generalized best reply correspondence, we defi ne a generalized best reply dynamics as a differential inclusion based on it. We call a face of the set of mixed strategy profi les a minimally asymptotically stable face (MASF) if it is asymptotically stable under some such dynamics and no subface of it is asymptotically stable under any such dynamics. The set of such correspondences (and dynamics) is endowed with the partial order of point-wise set inclusion and, under a mild condition on the normal form of the game at hand, forms a complete lattice with meets based on point-wise intersections. The refined best reply correspondence is then defined as the smallest element of the set of all generalized best reply correspondences. We find that every persistent retract (Kalai and Samet 1984) contains an MASF. Furthermore, persistent retracts are minimal CURB sets (Basu and Weibull 1991) based on the refi ned best reply correspondence. Conversely, every MASF must be a prep set (Voorneveld 2004), based again, however, on the refined best reply correspondence.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 8 ; Year: 2013 ; Issue: 1 ; Pages: 165-192 ; New Haven, CT: The Econometric Society
- Klassifikation
-
Wirtschaft
Existence and Stability Conditions of Equilibrium
Noncooperative Games
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
- Thema
-
Evolutionary game theory
best response dynamics
CURB sets
persistent retracts
asymptotic stability
Nash equilibrium refinements
learning
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kuzmics, Christoph
Balkenborg, Dieter
Hofbauer, Josef
- Ereignis
-
Veröffentlichung
- (wer)
-
The Econometric Society
- (wo)
-
New Haven, CT
- (wann)
-
2013
- DOI
-
doi:10.3982/TE652
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Kuzmics, Christoph
- Balkenborg, Dieter
- Hofbauer, Josef
- The Econometric Society
Entstanden
- 2013