Arbeitspapier

Judgement aggregators and boolean algebra homomorphism

The theory of Boolean algebras can be fruitfully applied to judgment aggregation: Assuming universality, systematicity and a sufficiently rich agenda, there is a correspondence between (i) non-trivial deductively closed judgment aggregators and (ii) Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Furthermore, there is a correspondence between (i) consistent complete judgment aggregators and (ii) 2-valued Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Since the shell of such a homomorphism equals the set of winning coalitions and since (ultra)filters are shells of (2-valued) Boolean algebra homomorphisms, we suggest an explanation for the effectiveness of the (ultra)filter method in social choice theory. From the (ultra)filter property of the set of winning coalitions, one obtains two general impossibility theorems for judgment aggregation on finite electorates, even without the Pareto principle.

Sprache
Englisch

Erschienen in
Series: Working Papers ; No. 414

Klassifikation
Wirtschaft
Thema
Judgment aggregation
Systematicity
Impossibility theorems
Filter
Ultrafilter
Boolean algebra homomorphism
Präferenztheorie
Aggregation
Soziale Wohlfahrtsfunktion
Unmöglichkeitstheorem
Theorie

Ereignis
Geistige Schöpfung
(wer)
Herzberg, Frederik
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Institute of Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2009

Handle
URN
urn:nbn:de:hbz:361-14507
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Herzberg, Frederik
  • Bielefeld University, Institute of Mathematical Economics (IMW)

Entstanden

  • 2009

Ähnliche Objekte (12)