Arbeitspapier
Estimating low sampling frequency risk measure by high-frequency data
Weekly, quarterly and yearly risk measures are crucial for risk reporting according to Basel III and Solvency II. For the respective data frequencies, the authors show in a simulation and backtest study that available data series are not sufficient in order to estimate Value at Risk and Expected Shortfall sufficiently, given confidence levels of 99.9% and 99.99%. Accordingly, this paper presents a semi-parametric estimation method, rescaling data from high- to low-frequency which allows to obtain significantly more data points for the estimation of the respective risk measures. The presented methodology in the α-stable framework, which is able to mimic multifractal behavior in asset returns, provides tail events which never occurred in the original low-frequency dataset.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2019-003
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Specific Distributions; Specific Statistics
Forecasting Models; Simulation Methods
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- Thema
-
high-frequency
multifractal
stable distribution
rescaling
risk management
Value at Risk
quantile distribution
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Wesselhöfft, Niels
Härdle, Wolfgang Karl
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Wesselhöfft, Niels
- Härdle, Wolfgang Karl
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2019