Arbeitspapier

Quick or cheap? Breaking points in dynamic markets

We examine two-sided markets where players arrive stochastically over time and are drawn from a continuum of types. The cost of matching a client and provider varies, so a social planner is faced with two contending objectives: a) to reduce players' waiting time before getting matched; and b) to form efficient pairs in order to reduce matching costs. We show that such markets are characterized by a quick or cheap dilemma: Under a large class of distributional assumptions, there is no 'free lunch', i.e., there exists no clearing schedule that is simultaneously optimal along both objectives. We further identify a unique breaking point signifying a stark reduction in matching cost contrasted by an increase in waiting time. Generalizing this model, we identify two regimes: one, where no free lunch exists; the other, where a window of opportunity opens to achieve a free lunch. Remarkably, greedy scheduling is never optimal in this setting.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 338

Klassifikation
Wirtschaft
Market Design
Bargaining Theory; Matching Theory
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Information, Knowledge, and Uncertainty: General
Thema
dynamic matching
online markets
market design

Ereignis
Geistige Schöpfung
(wer)
Mertikopoulos, Panayotis
Nax, Heinrich H.
Pradelski, Bary S. R.
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2019

DOI
doi:10.5167/uzh-182597
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Mertikopoulos, Panayotis
  • Nax, Heinrich H.
  • Pradelski, Bary S. R.
  • University of Zurich, Department of Economics

Entstanden

  • 2019

Ähnliche Objekte (12)