Arbeitspapier

Constructing irregular histograms by penalized likelihood

We propose a fully automatic procedure for the construction of irregular histograms. For a given number of bins, the maximum likelihood histogram is known to be the result of a dynamic programming algorithm. To choose the number of bins, we propose two different penalties motivated by recent work in model selection by Castellan [6] and Massart [26]. We give a complete description of the algorithm and a proper tuning of the penalties. Finally, we compare our procedure to other existing proposals for a wide range of different densities and sample sizes.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2009,04

Subject
irregular histogram
density estimation
penalized likelihood
dynamic programming

Event
Geistige Schöpfung
(who)
Rozenholc, Yves
Mildenberger, Thoralf
Gather, Ursula
Event
Veröffentlichung
(who)
Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2009

Handle
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Rozenholc, Yves
  • Mildenberger, Thoralf
  • Gather, Ursula
  • Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2009

Other Objects (12)