Arbeitspapier

Regularized area-level modelling for robust small area estimation in the presence of unknown covariate measurement errors

An approach to model-based small area estimation under covariate measurement errors is presented. Using a min-max approach, we proof that regularized regression coefficient estimation is equivalent to robust optimization under additive noise. Applying this equivalence, the Fay-Herriot model is extended by l1-norm, squared l2-norm and elastic net regularizations as robustification against design matrix perturbations. This allows for reliable area-statistic estimates without distributive information about the measurement errors. A best predictor and a Jackknife estimator of the mean squared error are presented. The methodology is evaluated in a simulation study under multiple measurement error scenarios to support the theoretical findings. A comparison to other robust small area approaches is conducted. An empirical application to poverty mapping in the US is provided. Estimated economic figures from the US Census Bureau and crime records from the Uniform Crime Reporting Program are used to model the number of citizens below the federal poverty threshold.

Sprache
Englisch

Erschienen in
Series: Research Papers in Economics ; No. 4/19

Klassifikation
Wirtschaft
Thema
min-max
pathwise coordinate descent
regularized least squares
robust optimization

Ereignis
Geistige Schöpfung
(wer)
Burgard, Jan Pablo
Krause, Joscha
Kreber, Dennis
Ereignis
Veröffentlichung
(wer)
Universität Trier, Fachbereich IV - Volkswirtschaftslehre
(wo)
Trier
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Burgard, Jan Pablo
  • Krause, Joscha
  • Kreber, Dennis
  • Universität Trier, Fachbereich IV - Volkswirtschaftslehre

Entstanden

  • 2019

Ähnliche Objekte (12)