Arbeitspapier
Cryptocurrencies, Metcalfe's law and LPPL models
In this paper we investigate the statistical properties of cryptocurrencies by using alpha-stable distributions. We also study the benefits of the Metcalfe's law (the value of a network is proportional to the square of the number of connected users of the system) for the evaluation of cryptocurrencies. As the results showed a potential for herding behaviour, we used LPPL models to capture the behaviour of cryptocurrencies exchange rates during an endogenous bubble and to predict the most probable time of the regime switching.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2018-056
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Forecasting Models; Simulation Methods
Financial Econometrics
Demand for Money
Monetary Systems; Standards; Regimes; Government and the Monetary System; Payment Systems
Money and Interest Rates: Forecasting and Simulation: Models and Applications
Money Supply; Credit; Money Multipliers
Financial Forecasting and Simulation
- Thema
-
cryptocurrency
Bitcoin
CRIX
Log-Periodic Power Law
Metcalfe's law
stable distribution
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Pele, Daniel Traian
Mazurencu-Marinescu-Pele, Miruna
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Pele, Daniel Traian
- Mazurencu-Marinescu-Pele, Miruna
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2018