Arbeitspapier
Forecasting the term structure of crude oil futures prices with neural networks
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed framework is empirically tested on 24 years of crude oil futures prices covering several important recessions and crisis periods. We find 1-month, 3-month, 6-month and 12-month-ahead forecasts obtained from focused time-delay neural network to be significantly more accurate than forecasts from other benchmark models. The proposed forecasting strategy produces the lowest errors across all times to maturity.
- Sprache
-
Englisch
- Erschienen in
-
Series: IES Working Paper ; No. 25/2015
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Neural Networks and Related Topics
Financial Forecasting and Simulation
- Thema
-
term structure
Nelson-Siegel model
dynamic neural networks
crude oil futures
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Baruník, Jozef
Malinská, Barbora
- Ereignis
-
Veröffentlichung
- (wer)
-
Charles University in Prague, Institute of Economic Studies (IES)
- (wo)
-
Prague
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
- 10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Baruník, Jozef
- Malinská, Barbora
- Charles University in Prague, Institute of Economic Studies (IES)
Entstanden
- 2015