Arbeitspapier

Forecasting the term structure of crude oil futures prices with neural networks

The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed framework is empirically tested on 24 years of crude oil futures prices covering several important recessions and crisis periods. We find 1-month, 3-month, 6-month and 12-month-ahead forecasts obtained from focused time-delay neural network to be significantly more accurate than forecasts from other benchmark models. The proposed forecasting strategy produces the lowest errors across all times to maturity.

Sprache
Englisch

Erschienen in
Series: IES Working Paper ; No. 25/2015

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Neural Networks and Related Topics
Financial Forecasting and Simulation
Thema
term structure
Nelson-Siegel model
dynamic neural networks
crude oil futures

Ereignis
Geistige Schöpfung
(wer)
Baruník, Jozef
Malinská, Barbora
Ereignis
Veröffentlichung
(wer)
Charles University in Prague, Institute of Economic Studies (IES)
(wo)
Prague
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Baruník, Jozef
  • Malinská, Barbora
  • Charles University in Prague, Institute of Economic Studies (IES)

Entstanden

  • 2015

Ähnliche Objekte (12)