Artikel

Convolutional neural network classification of telematics car driving data

The aim of this project is to analyze high-frequency GPS location data (second per second) of individual car drivers (and trips). We extract feature information about speeds, acceleration, deceleration, and changes of direction from this high-frequency GPS location data. Time series of this feature information allow us to appropriately allocate individual car driving trips to selected drivers using convolutional neural networks.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-18 ; Basel: MDPI

Classification
Wirtschaft
Subject
telematics car driving data
driving styles
pattern recognition
image recognition
convolutional neural networks

Event
Geistige Schöpfung
(who)
Gao, Guangyuan
Wüthrich, Mario V.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/risks7010006
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Gao, Guangyuan
  • Wüthrich, Mario V.
  • MDPI

Time of origin

  • 2019

Other Objects (12)