Arbeitspapier

Outlier identification rules for generalized linear models

Observations which seem to deviate strongly from the main part of the data may occur in every statistical analysis. These observations usually labelled as outliers, may cause completely misleading results when using standard methods and may also contain information about special events or dependencies. Therefore it is interest to identify them. We discuss outliers in situations where a generalized linear model is assumed as null-model for the regular data and introduce rules for their identifications. For the special cases of a loglinear Poisson model and a logistic regression model some one-step identifiers based on robust and non-robust estimators are proposed and compared.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2003,12

Subject
Regression
Theorie
Statistischer Fehler

Event
Geistige Schöpfung
(who)
Kuhnt, Sonja
Pawlitschko, Jörg
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2003

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kuhnt, Sonja
  • Pawlitschko, Jörg
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2003

Other Objects (12)