Artikel

Impossibility theorems with countably many individuals

The problem of social choice is studied on a domain with countably many individuals. In contrast to most of the existing literature which establish either non-constructive possibilities or approximate (i.e. invisible) dictators, we show that if one adds a continuity property to the usual set of axioms, the classical impossibilities persist in countable societies. Along the way, a new proof of the Gibbard-Satterthwaite theorem in the style of Peter Fishburn's well known proof of Arrow's impossibility theorem is obtained.

Sprache
Englisch

Erschienen in
Journal: SERIEs - Journal of the Spanish Economic Association ; ISSN: 1869-4195 ; Volume: 9 ; Year: 2018 ; Issue: 3 ; Pages: 333-350 ; Heidelberg: Springer

Klassifikation
Wirtschaft
Analysis of Collective Decision-Making: General
Social Choice; Clubs; Committees; Associations
Thema
Arrow's impossibility theorem
The Gibbard-Satterthwaite theorem
Infinite society
Continuity

Ereignis
Geistige Schöpfung
(wer)
Ninjbat, Uuganbaatar
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2018

DOI
doi:10.1007/s13209-018-0182-4
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ninjbat, Uuganbaatar
  • Springer

Entstanden

  • 2018

Ähnliche Objekte (12)