Artikel
Impossibility theorems with countably many individuals
The problem of social choice is studied on a domain with countably many individuals. In contrast to most of the existing literature which establish either non-constructive possibilities or approximate (i.e. invisible) dictators, we show that if one adds a continuity property to the usual set of axioms, the classical impossibilities persist in countable societies. Along the way, a new proof of the Gibbard-Satterthwaite theorem in the style of Peter Fishburn's well known proof of Arrow's impossibility theorem is obtained.
- Sprache
-
Englisch
- Erschienen in
-
Journal: SERIEs - Journal of the Spanish Economic Association ; ISSN: 1869-4195 ; Volume: 9 ; Year: 2018 ; Issue: 3 ; Pages: 333-350 ; Heidelberg: Springer
- Klassifikation
-
Wirtschaft
Analysis of Collective Decision-Making: General
Social Choice; Clubs; Committees; Associations
- Thema
-
Arrow's impossibility theorem
The Gibbard-Satterthwaite theorem
Infinite society
Continuity
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ninjbat, Uuganbaatar
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer
- (wo)
-
Heidelberg
- (wann)
-
2018
- DOI
-
doi:10.1007/s13209-018-0182-4
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Ninjbat, Uuganbaatar
- Springer
Entstanden
- 2018