Arbeitspapier

Graphical data representation in bankruptcy analysis

Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing the need for graphical tools. In contrast to that non-linear non-parametric models achieving better accuracy often rely on visualisation. We demonstrate an application of visualisation techniques at different stages of corporate default analysis based on Support Vector Machines (SVM). These stages are the selection of variables (predictors), probability of default (PD) estimation and the representation of PDs for two and higher dimensional models with colour coding. It is at this stage when the selection of a proper colour scheme becomes essential for a correct visualisation of PDs. The mapping of scores into PDs is done as a non-parametric regression with monotonisation. The SVM learns a non-parametric score function that is, in its turn, non-parametrically transformed into PDs. Since PDs cannot be represented in a closed form, some other ways of displaying them must be found. Graphical tools give this possibility.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2006,015

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Bankruptcy; Liquidation
Neural Networks and Related Topics
Thema
company rating
default probability
support vector machines
colour coding

Ereignis
Geistige Schöpfung
(wer)
Härdle, Wolfgang Karl
Moro, Rouslan A.
Schäfer, Dorothea
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Härdle, Wolfgang Karl
  • Moro, Rouslan A.
  • Schäfer, Dorothea
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2006

Ähnliche Objekte (12)