Double U‐Net: Improved multiscale modeling via fully convolutional neural networks

Abstract: In multiscale modeling, the response of the macroscopic material is computed by considering the behavior of the microscale at each material point. To keep the computational overhead low when simulating such high performance materials, an efficient, but also very accurate prediction of the microscopic behavior is of utmost importance. Artificial neural networks are well known for their fast and efficient evaluation. We deploy fully convolutional neural networks, with one advantage being that, compared to neural networks directly predicting the homogenized response, any quantity of interest can be recovered from the solution, for example, peak stresses relevant for material failure. We propose a novel model layout, which outperforms state‐of‐the‐art models with fewer model parameters. This is achieved through a staggered optimization scheme ensuring an accurate low‐frequency prediction. The prediction is further improved by superimposing an efficient to evaluate U‐net, which captures the remaining high‐level features.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Double U‐Net: Improved multiscale modeling via fully convolutional neural networks ; day:22 ; month:09 ; year:2023 ; extent:9
Proceedings in applied mathematics and mechanics ; (22.09.2023) (gesamt 9)

Urheber
Lißner, Julian
Fritzen, Felix

DOI
10.1002/pamm.202300205
URN
urn:nbn:de:101:1-2023092215170937667253
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:46 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)