Artikel

De Finetti's control problem with parisian ruin for spectrally negative Lévy processes

We consider de Finetti's stochastic control problem when the (controlled) process is allowed to spend time under the critical level. More precisely, we consider a generalized version of this control problem in a spectrally negative Lévy model with exponential Parisian ruin. We show that, under mild assumptions on the Lévy measure, an optimal strategy is formed by a barrier strategy and that this optimal barrier level is always less than the optimal barrier level when classical ruin is implemented. In addition, we give necessary and sufficient conditions for the barrier strategy at level zero to be optimal.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 3 ; Pages: 1-11 ; Basel: MDPI

Classification
Wirtschaft
Subject
barrier strategies
log-convexity
optimal dividends
Parisian ruin
spectrally negative Lévy processes
stochastic control

Event
Geistige Schöpfung
(who)
Renaud, Jean-François
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/risks7030073
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Renaud, Jean-François
  • MDPI

Time of origin

  • 2019

Other Objects (12)