Arbeitspapier

Gaussian Process Forecast with multidimensional distributional entries

In this work, we propose to define Gaussian Processes indexed by multidimensional distributions. In the framework where the distributions can be modeled as i.i.d realizations of a measure on the set of distributions, we prove that the kernel defined as the quadratic distance between the transportation maps, that transport each distribution to the barycenter of the distributions, provides a valid covariance function. In this framework, we study the asymptotic properties of this process, proving micro ergodicity of the parameters.

Language
Englisch

Bibliographic citation
Series: IRTG 1792 Discussion Paper ; No. 2018-030

Classification
Wirtschaft
Mathematical and Quantitative Methods: General
Subject
Gaussian Process
Kernel methods
Wasserstein Distance

Event
Geistige Schöpfung
(who)
Bachoc, Francois
Suvorikova, Alexandra
Loubes, Jean-Michel
Spokoiny, Vladimir
Event
Veröffentlichung
(who)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(where)
Berlin
(when)
2018

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bachoc, Francois
  • Suvorikova, Alexandra
  • Loubes, Jean-Michel
  • Spokoiny, Vladimir
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Time of origin

  • 2018

Other Objects (12)