Konferenzbeitrag

Automatic Leather Species Identification using Machine Learning Techniques

Content: Identification and classification of leather species becomes valuable and necessary due to concerns regarding consumer protection, product counterfeiting, and dispute settlement in the leather industry. Identification and classification of leather into species is carried out by histological examination or molecular analysis based on DNA. Manual method requires expertise, training and experience, and due to involvement of human judgment disputes are inevitable thus a need to automate the leather species identification. In the present investigation, an attempt has been made to automate leather species identification using machine learning techniques. A novel non-destructive leather species identification algorithm is proposed for the identification of cow, buffalo, goat and sheep leathers. Hair pore pattern was segmented efficiently using k-means clustering algorithm Significant features representing the unique characteristics of each species such as no.of hair pores, pore density, percent porosity, shape of the pores etc., were extracted. The generated features were used for training the Random forest classifier. Experimental results on the leather species image library database achieved an accuracy of 87 % using random forest as classifier, confirming the potentials of using the proposed system for automatic leather species classification. Take-Away: Novel technique to identify leather species Non destructive method Machine learning algorithms to automate leather species identification

Verwandtes Objekt und Literatur
urn:nbn:de:bsz:14-qucosa2-340872
qucosa:34087

Thema
Ingenieurwissenschaften

Ereignis
Geistige Schöpfung
(wer)
Jawahar, Malathy
Kanth, S. V.
Rajangam, V.
Selvi, Tamil
Ereignis
Herstellung
(wer)
International Union of Leather Technologists and Chemists Societies
Ereignis
Veröffentlichung
(wer)
Verein für Gerberei-Chemie und -Technik e. V.
Forschungsinstitut für Leder und Kunststoffbahnen (FILK) gGmbH

URN
urn:nbn:de:bsz:14-qucosa2-343258
Letzte Aktualisierung
14.03.2025, 08:16 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Jawahar, Malathy
  • Kanth, S. V.
  • Rajangam, V.
  • Selvi, Tamil
  • International Union of Leather Technologists and Chemists Societies
  • Verein für Gerberei-Chemie und -Technik e. V.
  • Forschungsinstitut für Leder und Kunststoffbahnen (FILK) gGmbH

Ähnliche Objekte (12)