Landmark registration in CT for lung model approximation in EIT

Abstract: For the visualization of pulmonary ventilation with Electrical Impedance Tomography (EIT), most devices rely on generalized reconstruction models. Yet, fixed thorax dimensions, predetermined electrode locations, and standard lung shapes lead to multiple sources of EIT imaging distortion. The following work compares reconstructions of a library model, a practical model based on landmark fitting, and a detailed model based on manual segmentation. CT images of five pigs were segmented into torso surface, electrode positions, and lung borders. Practical models were created with reduced data, registration, and fitting. Detailed models were created by using the complete segmentation data. After EIT reconstruction and tidal image calculation, the overlap of CT lung segmentation and ventilated voxel was calculated. Compared with the results of a standardized model, the practical model reached an average ventilation/segmentation-overlap difference of an additional 12 %, and the detailed model achieved an average difference of 10 %. In conclusion, the shift of reconstructed impedance towards the segmented lung region is similar in both models when compared to the standard model, while the practical model requires a considerably less amount of information.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Landmark registration in CT for lung model approximation in EIT ; volume:10 ; number:1 ; year:2024 ; pages:21-24 ; extent:4
Current directions in biomedical engineering ; 10, Heft 1 (2024), 21-24 (gesamt 4)

Urheber
Fuchs, Reinhard
Unger, Michael
Wolfgang Reske, Andreas
Neumuth, Thomas

DOI
10.1515/cdbme-2024-0106
URN
urn:nbn:de:101:1-2409161535509.707537810464
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)