Arbeitspapier

Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change

This paper extends the Baltagi et al. (2018, 2021) static and dynamic ?-contamination papers to dynamic space-time models. We investigate the robustness of Bayesian panel data models to possible misspecification of the prior distribution. The proposed robust Bayesian approach departs from the standard Bayesian framework in two ways. First, we consider the ?-contamination class of prior distributions for the model parameters as well as for the individual effects. Second, both the base elicited priors and the ?-contamination priors use Zellner (1986)’s g-priors for the variance-covariance matrices. We propose a general “toolbox†for a wide range of specifications which includes the dynamic space- time panel model with random effects, with cross-correlated effects à la Chamberlain, for the Hausman-Taylor world and for dynamic panel data models with homogeneous/ heterogeneous slopes and cross-sectional dependence. Using an extensive Monte Carlo simulation study, we compare the finite sample properties of our proposed estimator to those of standard classical estimators. We illustrate our robust Bayesian estimator using the same data as in Keane and Neal (2020). We obtain short run as well as long run effects of climate change on corn producers in the United States.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 15815

Klassifikation
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
Climate; Natural Disasters and Their Management; Global Warming
Thema
crop yields
panel data
dynamic model
space-time
ε-contamination
robust Bayesian estimator
climate change

Ereignis
Geistige Schöpfung
(wer)
Baltagi, Badi H.
Bresson, Georges
Chaturvedi, Anoop
Lacroix, Guy
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Baltagi, Badi H.
  • Bresson, Georges
  • Chaturvedi, Anoop
  • Lacroix, Guy
  • Institute of Labor Economics (IZA)

Entstanden

  • 2022

Ähnliche Objekte (12)