Classification of Stationary Signals with Mixed Spectrum

This paper deals with the problem of discrimination between two sets of complex signals generated by stationary processes with both random effects and mixed spectral distributions. The presence of outlier signals and their influence on the classification process is also considered. As an initial input, a feature vector obtained from estimations of the spectral distribution is proposed and used with two different learning machines, namely a single artificial neural network and the LogitBoost classifier. Performance of both methods is evaluated on five simulation studies as well as on a set of actual data of electroencephalogram (EEG) records obtained from both normal subjects and others having experienced epileptic seizures. Of the different classification methods, Logitboost is shown to be more robust to the presence of outlier signals.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Classification of Stationary Signals with Mixed Spectrum ; volume:7 ; number:1 ; year:2011
The international journal of biostatistics ; 7, Heft 1 (2011)

Urheber
Saavedra, Pedro
Santana-del-Pino, Angelo
Hernández-Flores, Carmen N.
Artiles-Romero, Juan
González-Henríquez, Juan J.

DOI
10.2202/1557-4679.1288
URN
urn:nbn:de:101:1-2502190346515.266466901570
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:20 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Saavedra, Pedro
  • Santana-del-Pino, Angelo
  • Hernández-Flores, Carmen N.
  • Artiles-Romero, Juan
  • González-Henríquez, Juan J.

Ähnliche Objekte (12)