Arbeitspapier
Sigma Point Filters for Dynamic Nonlinear Regime Switching Models
In this paper we take three well known Sigma Point Filters, namely the Unscented Kalman Filter, the Divided Difference Filter, and the Cubature Kalman Filter, and extend them to allow for a very general class of dynamic nonlinear regime switching models. Using both a Monte Carlo study and real data, we investigate the properties of our proposed filters by using a regime switching DSGE model solved using nonlinear methods. We find that the proposed filters perform well. They are both fast and reasonably accurate, and as a result they will provide practitioners with a convenient alternative to Sequential Monte Carlo methods. We also investigate the concept of observability and its implications in the context of the nonlinear filters developed and propose some heuristics. Finally, we provide in the RISE toolbox, the codes implementing these three novel filters.
- ISBN
-
978-82-7553-867-1
- Language
-
Englisch
- Bibliographic citation
-
Series: Working Paper ; No. 10/2015
- Classification
-
Wirtschaft
- Subject
-
non-linear DSGE estimation
regime-switching
higher-order perturbation
sigma point filters
observability
- Event
-
Geistige Schöpfung
- (who)
-
Binning, Andrew
Maih, Junior
- Event
-
Veröffentlichung
- (who)
-
Norges Bank
- (where)
-
Oslo
- (when)
-
2015
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Binning, Andrew
- Maih, Junior
- Norges Bank
Time of origin
- 2015