Photonic multiplexing techniques for neuromorphic computing

Abstract: The simultaneous advances in artificial neural networks and photonic integration technologies have spurred extensive research in optical computing and optical neural networks (ONNs). The potential to simultaneously exploit multiple physical dimensions of time, wavelength and space give ONNs the ability to achieve computing operations with high parallelism and large-data throughput. Different photonic multiplexing techniques based on these multiple degrees of freedom have enabled ONNs with large-scale interconnectivity and linear computing functions. Here, we review the recent advances of ONNs based on different approaches to photonic multiplexing, and present our outlook on key technologies needed to further advance these photonic multiplexing/hybrid-multiplexing techniques of ONNs.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Photonic multiplexing techniques for neuromorphic computing ; volume:12 ; number:5 ; year:2023 ; pages:795-817 ; extent:23
Nanophotonics ; 12, Heft 5 (2023), 795-817 (gesamt 23)

Creator
Bai, Yunping
Xu, Xingyuan
Tan, Mengxi
Sun, Yang
Li, Yang
Wu, Jiayang
Morandotti, Roberto
Mitchell, Arnan
Xu, Kun
Moss, David J.

DOI
10.1515/nanoph-2022-0485
URN
urn:nbn:de:101:1-2023030913403878404829
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:00 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bai, Yunping
  • Xu, Xingyuan
  • Tan, Mengxi
  • Sun, Yang
  • Li, Yang
  • Wu, Jiayang
  • Morandotti, Roberto
  • Mitchell, Arnan
  • Xu, Kun
  • Moss, David J.

Other Objects (12)