Arbeitspapier

Bias in nearest-neighbor hazard estimation

In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2008,15

Subject
hazard rate
kernel smoothing
bandwidth selection
nearest neighbor bandwidth
rule of thumb
plug-in
cross-validation
credit risk

Event
Geistige Schöpfung
(who)
Weißbach, Rafael
Dette, Holger
Event
Veröffentlichung
(who)
Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2008

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Weißbach, Rafael
  • Dette, Holger
  • Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2008

Other Objects (12)