Arbeitspapier

Automatic and probabilistic foehn diagnosis with a statistical mixture model

Diagnosing foehn winds from weather station data downwind of topographic obstacles requires distinguishing them from other downslope winds, particularly nocturnal ones driven by radiative cooling. We present an automatic classification scheme to obtain reproducible results that include information about the (un)certainty of the diagnosis. A statistical mixture model separates foehn and no-foehn winds in a measured time series of wind. In addition to wind speed and direction, it accommodates other physically meaningful classifiers such as relative humidity or the (potential) temperature difference to an upwind station (e.g., near the crest). The algorithm was tested for the central Alpine Wipp Valley against human expert classification and a previous objective method (Drechsel and Mayr 2008), which the new method outperforms. Climatologically, using only wind information gives nearly identical foehn frequencies as when using additional covariables, making the method suitable for comparable foehn climatologies all over the world where station data are available for at least one year.

Sprache
Englisch

Erschienen in
Series: Working Papers in Economics and Statistics ; No. 2013-22

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Single Equation Models; Single Variables: Other
Climate; Natural Disasters and Their Management; Global Warming
Thema
foehn wind
foehn diagnosis
finite mixture model
model-based clustering

Ereignis
Geistige Schöpfung
(wer)
Plavcan, David
Mayr, Georg J.
Zeileis, Achim
Ereignis
Veröffentlichung
(wer)
University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
(wo)
Innsbruck
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Plavcan, David
  • Mayr, Georg J.
  • Zeileis, Achim
  • University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)

Entstanden

  • 2013

Ähnliche Objekte (12)