Arbeitspapier

A likelihood ratio test for stationarity of rating transitions

For a time-continuous discrete-state Markov process as model for rating transitions, we study the time-stationarity by means of a likelihood ratio test. For multiple Markov process data from a multiplicative intensity model, maximum likelihood parameter estimates can be represented as martingale transform of the processes counting transitions between the rating states. As a consequence, the profile partial likelihood ratio is asymptotically X-2-distributed. An internal rating data set reveals highly significant instationarity.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2008,27

Classification
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Multiple or Simultaneous Equation Models: Truncated and Censored Models; Switching Regression Models
Duration Analysis; Optimal Timing Strategies
Subject
Stationarity
Multiple Markov process
Counting process
Likelihood ratio
Panel data

Event
Geistige Schöpfung
(who)
Weißbach, Rafael
Walter, Ronja
Event
Veröffentlichung
(who)
Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2008

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Weißbach, Rafael
  • Walter, Ronja
  • Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2008

Other Objects (12)