Artikel
S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA
This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange. To achieve the objectives, the study uses descriptive statistics; tests including variance ratio, Augmented Dickey-Fuller, Phillips-Perron, and Kwiatkowski Phillips Schmidt and Shin; and Autoregressive Integrated Moving Average (ARIMA). The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series, using the ARIMA model. The results reveal that the mean returns of both indices are positive but near zero. This is indicative of a regressive tendency in the long-term. The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values, with few deviations. Hence, the ARIMA model is capable of predicting medium- or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Financial Innovation ; ISSN: 2199-4730 ; Volume: 6 ; Year: 2020 ; Issue: 1 ; Pages: 1-19 ; Heidelberg: Springer
- Classification
-
Management
Asset Pricing; Trading Volume; Bond Interest Rates
Information and Market Efficiency; Event Studies; Insider Trading
Financial Forecasting and Simulation
- Subject
-
Efficient market hypothesis
Bombay stock exchange
ARIMA
KPSS
S&P BSE Sensex
Forecasting
S&P BSE IT
- Event
-
Geistige Schöpfung
- (who)
-
Challa, Madhavi Latha
Malepati, Venkataramanaiah
Kolusu, Siva Nageswara Rao
- Event
-
Veröffentlichung
- (who)
-
Springer
- (where)
-
Heidelberg
- (when)
-
2020
- DOI
-
doi:10.1186/s40854-020-00201-5
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Challa, Madhavi Latha
- Malepati, Venkataramanaiah
- Kolusu, Siva Nageswara Rao
- Springer
Time of origin
- 2020