Transfer learning for photonic delay-based reservoir computing to compensate parameter drift

Abstract: Photonic reservoir computing has been demonstrated to be able to solve various complex problems. Although training a reservoir computing system is much simpler compared to other neural network approaches, it still requires considerable amounts of resources which becomes an issue when retraining is required. Transfer learning is a technique that allows us to re-use information between tasks, thereby reducing the cost of retraining. We propose transfer learning as a viable technique to compensate for the unavoidable parameter drift in experimental setups. Solving this parameter drift usually requires retraining the system, which is very time and energy consuming. Based on numerical studies on a delay-based reservoir computing system with semiconductor lasers, we investigate the use of transfer learning to mitigate these parameter fluctuations. Additionally, we demonstrate that transfer learning applied to two slightly different tasks allows us to reduce the amount of input samples required for training of the second task, thus reducing the amount of retraining.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Transfer learning for photonic delay-based reservoir computing to compensate parameter drift ; volume:12 ; number:5 ; year:2022 ; pages:949-961 ; extent:13
Nanophotonics ; 12, Heft 5 (2022), 949-961 (gesamt 13)

Urheber
Bauwens, Ian
Harkhoe, Krishan
Bienstman, Peter
Verschaffelt, Guy
Sande, Guy van der

DOI
10.1515/nanoph-2022-0399
URN
urn:nbn:de:101:1-2023030913403130867722
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:45 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)