Arbeitspapier

Predicting Stock Price Volatility by Analyzing Semantic Content in Media

Current models for predicting volatility do not incorporate information flow and are solely based on historical volatilities. We suggest a method to quantify the semantic content of words in news articles about a company and use this as a predictor of its stock volatility. The results show that future stock volatility is better predicted by our method than the conventional models. We also analyze the functional role of text in media either as a passive documentation of past information flow or as an active source for new information influencing future volatility. Our data suggest that semantic content may take both roles.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2014:38

Klassifikation
Wirtschaft
General Financial Markets: Other
Thema
volatility
information flow
latent semantic analysis
GARCH

Ereignis
Geistige Schöpfung
(wer)
Asgharian, Hossein
Sikström, Sverker
Ereignis
Veröffentlichung
(wer)
Lund University, School of Economics and Management, Department of Economics
(wo)
Lund
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Asgharian, Hossein
  • Sikström, Sverker
  • Lund University, School of Economics and Management, Department of Economics

Entstanden

  • 2014

Ähnliche Objekte (12)