Arbeitspapier

Causal inference by independent component analysis with applications to micro- and macroeconomic data

Structural vector-autoregressive models are potentially very useful tools for guiding both macro- and microeconomic policy. In this paper, we present a recently developed method for exploiting non-Gaussianity in the data for estimating such models, with the aim of capturing the causal structure underlying the data, and show how the method can be applied to both microeconomic data (processes of firm growth and firm performance) as well as macroeconomic data (effects of monetary policy).

Language
Englisch

Bibliographic citation
Series: Jena Economic Research Papers ; No. 2010,031

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Firm Behavior: Theory
Monetary Policy
Business Objectives of the Firm
Subject
Causality
Structural VAR
Independent Components Analysis
Non-Gaussianity
Firm Growth
Monetary Policy
Kausalanalyse
VAR-Modell
Strukturgleichungsmodell
Hauptkomponentenanalyse
Theorie
Schätzung
Unternehmenswachstum
Unternehmensentwicklung
Geldpolitik
Wirkungsanalyse
USA

Event
Geistige Schöpfung
(who)
Moneta, Alessio
Entner, Doris
Hoyer, Patrik
Coad, Alex
Event
Veröffentlichung
(who)
Friedrich Schiller University Jena and Max Planck Institute of Economics
(where)
Jena
(when)
2010

Handle
Last update
28.03.2025, 11:14 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Moneta, Alessio
  • Entner, Doris
  • Hoyer, Patrik
  • Coad, Alex
  • Friedrich Schiller University Jena and Max Planck Institute of Economics

Time of origin

  • 2010

Other Objects (12)