Arbeitspapier

Exploiting Information from Singletons in Panel Data Analysis: A GMM Approach

We propose a novel procedure, built within a Generalized Method of Moments framework, which exploits unpaired observations (singletons) to increase the efficiency of longitudinal fixed effect estimates. The approach allows increasing estimation efficiency, while properly tackling the bias due to unobserved time-invariant characteristics. We assess its properties by means of Monte Carlo simulations, and apply it to a traditional Total Factor Productivity regression, showing efficiency gains of approximately 8-9 percent.

Language
Englisch

Bibliographic citation
Series: IZA Discussion Papers ; No. 12465

Classification
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Model Construction and Estimation
Subject
efficient estimation
panel data
singletons
unobserved heterogeneity
GMM

Event
Geistige Schöpfung
(who)
Bruno, Randolph Luca
Magazzini, Laura
Stampini, Marco
Event
Veröffentlichung
(who)
Institute of Labor Economics (IZA)
(where)
Bonn
(when)
2019

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bruno, Randolph Luca
  • Magazzini, Laura
  • Stampini, Marco
  • Institute of Labor Economics (IZA)

Time of origin

  • 2019

Other Objects (12)