Arbeitspapier

A fast algorithm for finding the confidence set of large collections of models

The paper proposes a new algorithm for finding the confidence set of a collection of forecasts or prediction models. Existing numerical implementations for finding the confidence set use an elimination approach where one starts with the full collection of models and successively eliminates the worst performing until the null of equal predictive ability is no longer rejected at a given confidence level. The intuition behind the proposed implementation lies in reversing the process: one starts with a collection of two models and as models are successively added to the collection both the model rankings and p-values are updated. The first benefit of this updating approach is a reduction of one polynomial order in both the time complexity and memory cost of finding the confidence set of a collection of M models, falling respectively from O(M^3;) to O(M^2;) and from O(M^2;) to O(M). This theoretical prediction is confirmed by a Monte Carlo benchmarking analysis of the algorithms. The second key benefit of the updating approach is that it intuitively allows for further models to be added at a later point in time, thus enabling collaborative efforts using the model confidence set procedure.

Sprache
Englisch

Erschienen in
Series: School of Economics Discussion Papers ; No. 1519

Klassifikation
Wirtschaft
Hypothesis Testing: General
Methodological Issues: General
Model Evaluation, Validation, and Selection
Large Data Sets: Modeling and Analysis
Thema
model selection
model confidence set
bootstrapped statistics

Ereignis
Geistige Schöpfung
(wer)
Barde, Sylvain
Ereignis
Veröffentlichung
(wer)
University of Kent, School of Economics
(wo)
Canterbury
(wann)
2015

Handle
Letzte Aktualisierung
08.06.2025, 05:56 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Barde, Sylvain
  • University of Kent, School of Economics

Entstanden

  • 2015

Ähnliche Objekte (12)