Artikel

Extreme Points and Majorization: Economic Applications

We characterize the set of extreme points of monotonic functions that are either majorized by a given function f or themselves majorize f and show that these extreme points play a crucial role in many economic design problems. Our main results show that each extreme point is uniquely characterized by a countable collection of intervals. Outside these intervals the extreme point equals the original function f and inside the function is constant. Further consistency conditions need to be satisfied pinning down the value of an extreme point in each interval where it is constant. We apply these insights to a varied set of economic problems: equivalence and optimality of mechanisms for auctions and (matching) contests, Bayesian persuasion, optimal delegation, and decision making under uncertainty.

Language
Englisch

Bibliographic citation
Journal: Econometrica ; ISSN: 1468-0262 ; Volume: 89 ; Year: 2021 ; Issue: 4 ; Pages: 1557-1593

Classification
Wirtschaft
Subject
Majorization
extreme points
mechanism design

Event
Geistige Schöpfung
(who)
Kleiner, Andreas
Moldovanu, Benny
Strack, Philipp
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2021

DOI
doi:10.3982/ECTA18312
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Kleiner, Andreas
  • Moldovanu, Benny
  • Strack, Philipp
  • Wiley

Time of origin

  • 2021

Other Objects (12)