Artikel

Extreme Points and Majorization: Economic Applications

We characterize the set of extreme points of monotonic functions that are either majorized by a given function f or themselves majorize f and show that these extreme points play a crucial role in many economic design problems. Our main results show that each extreme point is uniquely characterized by a countable collection of intervals. Outside these intervals the extreme point equals the original function f and inside the function is constant. Further consistency conditions need to be satisfied pinning down the value of an extreme point in each interval where it is constant. We apply these insights to a varied set of economic problems: equivalence and optimality of mechanisms for auctions and (matching) contests, Bayesian persuasion, optimal delegation, and decision making under uncertainty.

Sprache
Englisch

Erschienen in
Journal: Econometrica ; ISSN: 1468-0262 ; Volume: 89 ; Year: 2021 ; Issue: 4 ; Pages: 1557-1593

Klassifikation
Wirtschaft
Thema
Majorization
extreme points
mechanism design

Ereignis
Geistige Schöpfung
(wer)
Kleiner, Andreas
Moldovanu, Benny
Strack, Philipp
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2021

DOI
doi:10.3982/ECTA18312
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kleiner, Andreas
  • Moldovanu, Benny
  • Strack, Philipp
  • Wiley

Entstanden

  • 2021

Ähnliche Objekte (12)