Arbeitspapier

Locally- but not Globally-identified SVARs

This paper analyzes Structural Vector Autoregressions (SVARs) where identification of structural parameters holds locally but not globally. In this case there exists a set of isolated structural parameter points that are observationally equivalent under the imposed restrictions. Although the data do not inform us which observationally equivalent point should be selected, the common frequentist practice is to obtain one as a maximum likelihood estimate and perform impulse response analysis accordingly. For Bayesians, the lack of global identification translates to non-vanishing sensitivity of the posterior to the prior, and the multi-modal likelihood gives rise to computational challenges as posterior sampling algorithms can fail to explore all the modes. This paper overcomes these challenges by proposing novel estimation and inference procedures. We characterize a class of identifying restrictions that deliver local but non-global identification, and the resulting number of observationally equivalent parameter values. We propose algorithms to exhaustively compute all admissible structural parameters given reduced-form parameters and utilize them to sample from the multi-modal posterior. In addition, viewing the set of observationally equivalent parameter points as the identified set, we develop Bayesian and frequentist procedures for inference on the corresponding set of impulse responses. An empirical example illustrates our proposal.

Language
Englisch

Bibliographic citation
Series: Quaderni - Working Paper DSE ; No. 1171

Classification
Wirtschaft
Econometrics
Estimation: General
Multiple or Simultaneous Equation Models; Multiple Variables: General
Model Construction and Estimation
Subject
local identification
Bayesian inference
Markov Chain Monte Carlo
robust Bayesian inference
frequentist inference
multi-modal posterior

Event
Geistige Schöpfung
(who)
Bacchiocchi, Emanuele
Kitagawa, Toru
Event
Veröffentlichung
(who)
Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Economiche (DSE)
(where)
Bologna
(when)
2022

DOI
doi:10.6092/unibo/amsacta/6925
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bacchiocchi, Emanuele
  • Kitagawa, Toru
  • Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Economiche (DSE)

Time of origin

  • 2022

Other Objects (12)