Arbeitspapier

Convergence of locally and globally interacting Markov chains

We study the long run behaviour of interactive Markov chains on infinite product spaces. In view of microstructure models of financial markets, the interaction has both a local and a global component. The convergence of such Markov chains is analyzed on the microscopic level and on the macroscopic level of empirical fields. We give sufficient conditions for convergence on the macroscopic level. Using a perturbation of the Dobrushin-Vasserstein contraction technique we show that macroscopic convergence implies weak convergence of the underlying Markov chain. This extends the basic convergence theorem of Vasserstein (1969) for locally interacting Markov chains to the case where an additional global component appears in the interaction.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 2001,21

Klassifikation
Wirtschaft
Thema
Markov chains on infinite product spaces
convergence of Markov chains
contraction techniques
Gibbs measures

Ereignis
Geistige Schöpfung
(wer)
Föllmer, Hans
Horst, Ulrich
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
2001

Handle
URN
urn:nbn:de:kobv:11-10049437
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Föllmer, Hans
  • Horst, Ulrich
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 2001

Ähnliche Objekte (12)