Artikel

On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints

We present an adaptive grid refinement algorithm to solve probabilistic optimization problems with infinitely many random constraints. Using a bilevel approach, we iteratively aggregate inequalities that provide most information not in a geometric but in a probabilistic sense. This conceptual idea, for which a convergence proof is provided, is then adapted to an implementable algorithm. The efficiency of our approach when compared to naive methods based on uniform grid refinement is illustrated for a numerical test example as well as for a water reservoir problem with joint probabilistic filling level constraints.

Language
Englisch

Bibliographic citation
Journal: Mathematical Methods of Operations Research ; ISSN: 1432-5217 ; Volume: 96 ; Year: 2021 ; Issue: 1 ; Pages: 1-37 ; Berlin, Heidelberg: Springer

Classification
Wirtschaft
Statistical Simulation Methods: General
Subject
Probabilistic constraints
Probust constraints
Chance constraints
Bilevel optimization
Semi-infinite optimization
Adaptive discretization
Reservoir management

Event
Geistige Schöpfung
(who)
Berthold, Holger
Heitsch, Holger
Henrion, René
Schwientek, Jan
Event
Veröffentlichung
(who)
Springer
(where)
Berlin, Heidelberg
(when)
2021

DOI
doi:10.1007/s00186-021-00764-8
Last update
15.04.0003, 1:40 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Berthold, Holger
  • Heitsch, Holger
  • Henrion, René
  • Schwientek, Jan
  • Springer

Time of origin

  • 2021

Other Objects (12)