Artikel
Assessing asset-liability risk with neural networks
We introduce a neural network approach for assessing the risk of a portfolio of assets and liabilities over a given time period. This requires a conditional valuation of the portfolio given the state of the world at a later time, a problem that is particularly challenging if the portfolio contains structured products or complex insurance contracts which do not admit closed form valuation formulas. We illustrate the method on different examples from banking and insurance. We focus on value-at-risk and expected shortfall, but the approach also works for other risk measures.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 1 ; Pages: 1-17 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
importance sampling
asset-liability risk
expected shortfall
neural networks
risk capital
solvency calculation
value-at-risk
- Event
-
Geistige Schöpfung
- (who)
-
Cheridito, Patrick
Ery, John
Wüthrich, Mario V.
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2020
- DOI
-
doi:10.3390/risks8010016
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Cheridito, Patrick
- Ery, John
- Wüthrich, Mario V.
- MDPI
Time of origin
- 2020