Artikel

Assessing asset-liability risk with neural networks

We introduce a neural network approach for assessing the risk of a portfolio of assets and liabilities over a given time period. This requires a conditional valuation of the portfolio given the state of the world at a later time, a problem that is particularly challenging if the portfolio contains structured products or complex insurance contracts which do not admit closed form valuation formulas. We illustrate the method on different examples from banking and insurance. We focus on value-at-risk and expected shortfall, but the approach also works for other risk measures.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 1 ; Pages: 1-17 ; Basel: MDPI

Classification
Wirtschaft
Subject
importance sampling
asset-liability risk
expected shortfall
neural networks
risk capital
solvency calculation
value-at-risk

Event
Geistige Schöpfung
(who)
Cheridito, Patrick
Ery, John
Wüthrich, Mario V.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/risks8010016
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Cheridito, Patrick
  • Ery, John
  • Wüthrich, Mario V.
  • MDPI

Time of origin

  • 2020

Other Objects (12)