Arbeitspapier

The singularity of the information matrix of the mixed proportional hazard model

Elbers and Ridder (1982) identify the Mixed Proportional Hazard model by assuming that the heterogeneity has finite mean. Under this assumption, the information matrix of the MPH model may be singular. Moreover, the finite mean assumption cannot be tested. This paper proposes a new identification condition that ensures non-singularity of the information bound. This implies that there can exist estimators that converge at rate root N. As an illustration, we apply our identifying assumption to the Transformation model of Horowitz (1996). In particular, we assume that the baseline hazard is constant near t=0 but make no no parametric assumptions are imposed for other values of t. We then derive an estimator for the scale normalization that converges at rate root N.

Language
Englisch

Bibliographic citation
Series: Research Report ; No. 2002-6

Classification
Wirtschaft
Subject
duration
semi-parametric efficiency bound
mixed proportional hazard
Nichtparametrisches Verfahren
Schätztheorie
Theorie

Event
Geistige Schöpfung
(who)
Ridder, Geert
Woutersen, Tiemen
Event
Veröffentlichung
(who)
The University of Western Ontario, Department of Economics
(where)
London (Ontario)
(when)
2002

Handle
Last update
11.06.2025, 12:29 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Ridder, Geert
  • Woutersen, Tiemen
  • The University of Western Ontario, Department of Economics

Time of origin

  • 2002

Other Objects (12)