Artikel

Estimating the competitive storage model with stochastic trends in commodity prices

We propose a State-Space Model (SSM) for commodity prices that combines the competitive storage model with a stochastic trend. This approach fits into the economic rationality of storage decisions and adds to previous deterministic trend specifications of the storage model. For a Bayesian posterior analysis of the SSM, which is nonlinear in the latent states, we used a Markov chain Monte Carlo algorithm based on the particle marginal Metropolis-Hastings approach. An empirical application to four commodity markets showed that the stochastic trend SSM is favored over deterministic trend specifications. The stochastic trend SSM identifies structural parameters that differ from those for deterministic trend specifications. In particular, the estimated price elasticities of demand are typically larger under the stochastic trend SSM.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 4 ; Pages: 1-24 ; Basel: MDPI

Classification
Wirtschaft
Subject
Bayesian posterior analysis
commodity price dynamics
particle marginal Metropolis-Hastings
state-space model

Event
Geistige Schöpfung
(who)
Osmundsen, Kjartan Kloster
Kleppe, Tore Selland
Liesenfeld, Roman
Oglend, Atle
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/econometrics9040040
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Osmundsen, Kjartan Kloster
  • Kleppe, Tore Selland
  • Liesenfeld, Roman
  • Oglend, Atle
  • MDPI

Time of origin

  • 2021

Other Objects (12)