Arbeitspapier

Robust Implementation of a Parsimonious Dynamic Factor Model to Nowcast GDP

Quarterly GDP figures usually are published with a delay of some weeks. A common way to generate GDP series of higher frequency, i.e. to nowcast GDP, is to use available indicators to calculate a single index by means of a common factor derived from a dynamic factor model (DFM). This paper deals with the implementation stage of this practice. We propose a two-tiered mechanism consisting in the identification of variables highly correlated with GDP as “core” indicators and a check of robustness of these variables in the sense of extreme bounds analysis. Accordingly selected indicators are used in an approximate DFM framework to exemplarily nowcast Spanish GDP growth. We show that our implementation produces more accurate nowcasts than both a benchmark stochastic process and the implementation based on the total set of core indicators.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 4574

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Forecasting Models; Simulation Methods
Thema
small-scale nowcasting models
Kalman Filter
extreme bounds analysis

Ereignis
Geistige Schöpfung
(wer)
Duarte, Pablo
Süssmuth, Bernd
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Duarte, Pablo
  • Süssmuth, Bernd
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2014

Ähnliche Objekte (12)