Arbeitspapier

Improvements in rating models for the German corporate sector

Group-specific estimations can significantly improve the predictive power of accountingbased rating models. This is shown using a binary logistic regression model applied to the Deutsche Bundesbank's USTAN dataset, which contains 300,000 financial statements provided by German companies for the years 1994 to 2002, i. e. throughout a complete business-cycle. The robustness and the representability of this result is verified through out-of-sample tests and through comparisons with a benchmark model which applies the variables of Moody's RiskCalcTM for Germany.

ISBN
978-3-86558-745-9
Language
Englisch

Bibliographic citation
Series: Discussion Paper Series 2 ; No. 2011,11

Classification
Wirtschaft
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
Bankruptcy; Liquidation
Model Evaluation, Validation, and Selection
Subject
Credit Risk
Credit Rating
Probability of Default
Logistic Regression

Event
Geistige Schöpfung
(who)
Förstemann, Till
Event
Veröffentlichung
(who)
Deutsche Bundesbank
(where)
Frankfurt a. M.
(when)
2011

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Förstemann, Till
  • Deutsche Bundesbank

Time of origin

  • 2011

Other Objects (12)