Arbeitspapier
Improvements in rating models for the German corporate sector
Group-specific estimations can significantly improve the predictive power of accountingbased rating models. This is shown using a binary logistic regression model applied to the Deutsche Bundesbank's USTAN dataset, which contains 300,000 financial statements provided by German companies for the years 1994 to 2002, i. e. throughout a complete business-cycle. The robustness and the representability of this result is verified through out-of-sample tests and through comparisons with a benchmark model which applies the variables of Moody's RiskCalcTM for Germany.
- ISBN
-
978-3-86558-745-9
- Language
-
Englisch
- Bibliographic citation
-
Series: Discussion Paper Series 2 ; No. 2011,11
- Classification
-
Wirtschaft
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
Bankruptcy; Liquidation
Model Evaluation, Validation, and Selection
- Subject
-
Credit Risk
Credit Rating
Probability of Default
Logistic Regression
- Event
-
Geistige Schöpfung
- (who)
-
Förstemann, Till
- Event
-
Veröffentlichung
- (who)
-
Deutsche Bundesbank
- (where)
-
Frankfurt a. M.
- (when)
-
2011
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Förstemann, Till
- Deutsche Bundesbank
Time of origin
- 2011