Arbeitspapier
Improvements in rating models for the German corporate sector
Group-specific estimations can significantly improve the predictive power of accountingbased rating models. This is shown using a binary logistic regression model applied to the Deutsche Bundesbank's USTAN dataset, which contains 300,000 financial statements provided by German companies for the years 1994 to 2002, i. e. throughout a complete business-cycle. The robustness and the representability of this result is verified through out-of-sample tests and through comparisons with a benchmark model which applies the variables of Moody's RiskCalcTM for Germany.
- ISBN
-
978-3-86558-745-9
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Paper Series 2 ; No. 2011,11
- Klassifikation
-
Wirtschaft
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
Bankruptcy; Liquidation
Model Evaluation, Validation, and Selection
- Thema
-
Credit Risk
Credit Rating
Probability of Default
Logistic Regression
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Förstemann, Till
- Ereignis
-
Veröffentlichung
- (wer)
-
Deutsche Bundesbank
- (wo)
-
Frankfurt a. M.
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Förstemann, Till
- Deutsche Bundesbank
Entstanden
- 2011